Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents experimental results of the rapid phase transition of liquid CO2 released from the bottom of a small rectangular duct (BR). The aim is to consider the factors influencing the phase transitions and the release rate if the rupture area is below the liquid level. The tests are initiated by rupturing the diaphragm separating the test section from an atmospheric chamber. Pressure and temperature measurements are used to analyze the phase transition. Also, a high-speed shadowgraph technique is used to visualize the waves. The results are compared with previous top-release tests (TR), where the rupture area is sited above the liquid level. Test results show that the duct’s outlet flow behavior for the BR differs from the TR tests, wherein the gas/two-phase flow is choking. In the BR tests, the shadowgraph images demonstrate that when the liquid/two-phase flows out, the liquid/vapor interface remains nearly fixed until it breaks up. This behavior indicates that the headspace vapor has little influence on the initial evaporation in the BR tests. The results from the current BR tests indicate a lower degree of superheating than in the TR tests (it decreases by 34% for LVF = 66.0%), and the evaporation rate is 1.2–1.8 times faster. Graphical abstract
This paper presents experimental results of the rapid phase transition of liquid CO2 released from the bottom of a small rectangular duct (BR). The aim is to consider the factors influencing the phase transitions and the release rate if the rupture area is below the liquid level. The tests are initiated by rupturing the diaphragm separating the test section from an atmospheric chamber. Pressure and temperature measurements are used to analyze the phase transition. Also, a high-speed shadowgraph technique is used to visualize the waves. The results are compared with previous top-release tests (TR), where the rupture area is sited above the liquid level. Test results show that the duct’s outlet flow behavior for the BR differs from the TR tests, wherein the gas/two-phase flow is choking. In the BR tests, the shadowgraph images demonstrate that when the liquid/two-phase flows out, the liquid/vapor interface remains nearly fixed until it breaks up. This behavior indicates that the headspace vapor has little influence on the initial evaporation in the BR tests. The results from the current BR tests indicate a lower degree of superheating than in the TR tests (it decreases by 34% for LVF = 66.0%), and the evaporation rate is 1.2–1.8 times faster. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.