Social networks are critical sources for event detection thanks to the characteristics of publicity and dissemination. Unfortunately, the randomness and semantic sparsity of the social network text bring significant challenges to the event detection task. In addition to text, time is another vital element in reflecting events since events are often followed for a while. Therefore, in this article, we propose a novel method named Multi-View Graph Attention Network (MVGAN) for event detection in social networks. It enriches event semantics through both neighbor aggregation and multi-view fusion in a heterogeneous social event graph. Specifically, we first construct a heterogeneous graph by adding the hashtag to associate the isolated short texts and describe events comprehensively. Then, we learn view-specific representations of events through graph convolutional networks from the perspectives of text semantics and time distribution, respectively. Finally, we design a hashtag-based multi-view graph attention mechanism to capture the intrinsic interaction across different views and integrate the feature representations to discover events. Extensive experiments on public benchmark datasets demonstrate that MVGAN performs favorably against many state-of-the-art social network event detection algorithms. It also proves that more meaningful signals can contribute to improving the event detection effect in social networks, such as published time and hashtags.