Summary
This paper aims to solve the H∞ stabilization problem for networked semi‐Markovian jump systems subject to randomly occurring uncertainties by an improved event‐triggered technique. A new measurement error that is defined as the difference value between the latest transmitted data and the mean value of both current data and latest transmitted data is introduced into the event‐triggered condition. Compared with traditional dynamic event‐triggered scheme, more unexpected data could be avoided to be transmitted, which is demonstrated in the simulation through sufficient comparison experiments. Furthermore, by employing a Lyapunov‐Krasovskii functional method and a free‐weighting matrix method, sufficient conditions are derived to guarantee the stabilization of the closed‐loop semi‐Markovian jump time‐delay system with uncertainties and a prescribed performance index. Then, a codesign method for H∞ controller gains and event‐triggered parameters is presented. Finally, simulations are given to verify the effectiveness of our improved dynamic event‐triggered scheme.