The crane-form pipeline (CFP) system is a kind of petrochemical mechanical equipment composed of multiple rotating joints and rigid pipelines. It is often used to transport chemical fluid products in the factory to tank trucks. In order to realize the automatic alignment of the CFP and the tank mouth, the trajectory tracking control problem of the CFP must be solved. Therefore, a saturated nonsingular fast terminal sliding mode (SNFTSM) algorithm is proposed in this paper. The new sliding mode manifold is constructed by the nonsingular fast terminal sliding mode (NFTSM) manifold, saturation functions and signum functions. Further, according to the sliding mode control algorithm and the dynamic model of the CFP system, the SNFTSM controller is designed. Owing to the existence of saturation functions in the controller, the stability analysis using the Lyapunov equation needs to be discussed in different cases. The results show that the system states can converge to the equilibrium point in finite time no matter where they are on the state’s phase plane. However, due to the existence of signum functions, the control signal will produce chattering. In order to eliminate the chattering problem, the form of the controller is improved by using the boundary layer function. Finally, the control effect of the algorithm is verified by simulation and compared with the NTSM, NFTSM and SNTSM algorithms. From the comparison results, it is obvious that the controller based on the SNFTSM algorithm can effectively reduce the amplitude of the control torque while guaranteeing the fast convergence of the CFP system state error. Specifically, compared with the NFTSM algorithm, the maximum input torque can even be reduced by more than half.