Conjunctivitis is a common multifactorial inflammatory ocular surface disease characterized by symptoms such as congestion, edema, and increased secretion of conjunctival tissue, and the potential effects of meteorological factors as well as extreme meteorological factors on conjunctivitis and their lagging effects have not been fully evaluated. We obtained the electronic case information of 59,731 outpatients with conjunctivitis from the Ophthalmology Department of the First Affiliated Hospital of Xinjiang Medical University (Urumqi, Xinjiang, China) for the period from January 1, 2013, to December 31, 2020. Meteorological data for daily mean temperature (°C), daily relative humidity (%), daily average wind speed (m/s), and atmospheric pressure (hPa) were obtained from the China Meteorological Data Sharing Service. The air pollutant data were obtained from 11 standard urban background fixed air quality monitors. A time-series analysis design and a quasi-Poisson generalized linear regression model combined with a distributed lagged nonlinear model (DLNM) were used to fit the effects of exposure to different meteorological factors and extreme weather on conjunctivitis outpatient visits. Subgroup analyses were performed on gender, age and season, and type of conjunctivitis. Univariate and multifactorial model results indicated that each 10-unit increase in mean temperature and relative humidity was associated with an increased risk of conjunctivitis outpatient visits, while each 10-unit increase in atmospheric pressure was associated with a decreased risk. The results of the extreme weather analysis suggested that extremely low levels of atmospheric pressure and relative humidity as well as extreme levels of temperature were associated with an increased risk of outpatient conjunctivitis visits, and extreme wind speeds were associated with a decreased risk. The results of the subgroup analysis suggested gender, age, and seasonal differences. We conducted the first large sample size time-series analysis in the large city furthest from the ocean in the world and confirmed for the first time that elevated mean temperature and extreme low levels of relative humidity in Urumqi were risk factors for local conjunctivitis outpatient visits, while elevated atmospheric pressure and extreme low levels of wind speed were protective factors, and there were lagged effects of temperature and atmospheric pressure. Multicenter studies with larger sample sizes are needed.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-023-26335-4.