Seven-day-old, etiolated barley (Hordeum vulgare 1. var Post) leaves were fractionated into crude and purified etioplast, microsomal, and plasma membrane (PM) fractions. Protoporphyrinogen oxidase (Protox) specific activities of crude etioplast, purified etio- reduced the Protox activity of all fractions, except that microsomal Protox activity was slightly stimulated by NADPH. Ascorbate, CSH, or a combination of the two reductants enhanced Protox inhibition by AFM, and AFM inhibition of Protox was greatest in all fractions with DTT. NADPH enhanced AFM inhibition significantly only in etioplast fractions. Uroporphyrinogen I (Urogen I) and coproporphyrinogen I (Coprogen I) oxidase activities were found in all fractions; however, etioplast fractions had significantly more substrate specificity for protoporphyrinogen IX (Protogen IX) than the other fractions. Urogen I and Coprogen I oxidase activities were unaffected by AFM in all fractions, and 2 mM DTT almost completely inhibited these activities from all fractions. Diethyldithiocarbamate inhibited PM Protox activity by 62% but had less effect on microsome and little or no effect on etioplast Protox. juglone and duroquinone stimulated microsomal and PM Protox activity, whereas the lesser effect of these quinones on etioplast Protox activity was judged to be due to PM and/or microsomal contaminants. These data indicate that there are microsomal and PM Protogen IX-oxidizing activities that are not the same as those associated with the etioplast and that these activities are not inhibited i n vivo by AFM. In summary, these data support the view that the primary source of high protoporphyrin IX concentrations in AFM-treated plant tissues is from Protogen IX exported by plastids and oxidized by AFM-resistant extraorganellar oxidases.