The fluorescent sterol analogue delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was synthesized and purified by reverse-phase high-performance liquid chromatography. Dehydroergosterol in aqueous solution had a critical micelle concentration of 25 nM and a maximum solubility of 1.3 microM as ascertained from fluorescence polarization and light scattering properties, respectively. Several lines of evidence indicated a close molecular interaction of dehydroergosterol with purified rat liver squalene and sterol carrier protein (SCP). SCP increased the maximal solubility of dehydroergosterol in aqueous buffer. The fluorescence emission spectrum of dehydroergosterol was blue shifted upon addition of SCP. The fluorescence lifetime of dehydroergosterol in aqueous buffer was 2.3 ns; addition of SCP resulted in the appearance of a second lifetime component near 12.4 ns. The SCP increased the fluorescence polarization of monomeric dehydroergosterol in aqueous buffer from 0.033 to 0.086. Scatchard analysis of the binding data indicated that dehydroergosterol interacted with purified rat liver SCP with an apparent KD = 0.88 microM and Bmax = 4.8 microM. At maximal binding, 1.0 mol of dehydroergosterol was specifically bound per mole of SCP. The close molecular interaction of dehydroergosterol with SCP was also demonstrated by energy-transfer experiments. The intermolecular distance between SCP and bound dehydroergosterol was evaluated by fluorescence energy transfer from tyrosine residues of SCP to the conjugated triene series of double bonds in dehydroergosterol. The transfer efficiency was 36%, and R, the apparent distance between the tyrosine energy donor and the dehydroergosterol energy acceptor, was 19 A. The significance of these data obtained in vitro for dehydroergosterol interaction with SCP was also tested in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)