Plants evolve physical defences, such as spines, against browsing herbivores. However, in some cases, these defences may be anachronistic because the principal consumers of protected parts of the plant are extinct. In such cases, there may be few extant species consuming heavily defended resources. Here we examine the spiny defences of Madagascar's endemic Didiereoideae, and ask whether they may be anachronistic. To accomplish this aim, we reviewed the literature to determine which species consume these plants today, and then used stable isotope biogeochemistry to determine who may have exploited Didiereoideae in the recent past. There are four major groups of browsers that are now extinct in Madagascar: giant lemurs, elephant birds (Aepyornis and Mullerornis: Aepyornithidae), pygmy hippopotamuses (Hippopotamus) and giant tortoises (Aldabrachelys: Testudinidae). Each group was evaluated for isotopic evidence of didiereoid plant consumption. Given the structure of members of this plant clade (especially Alluaudia), we predicted that lemurs would be their most important consumers. Three extant lemur species consume Didiereoideae. Several of the extinct lemurs, particularly Hadropithecus stenognathus, may have relied heavily on these spiny plants. None of the non-lemur megafaunal browsers (elephant birds, hippopotamuses and giant tortoises) were important consumers of Didiereoideae. Motivation Madagascar is renowned for its wealth of endemic flora and fauna. In particular, the arid south and southwest is famous for its 'spiny forests' full of spiny bushes and trees belonging to the Apocynaceae (e.g. Pachypodium lamerei), Euphorbiaceae (e.g. Euphorbia stenoclada), Fabaceae (e.g. Acacia bellula), Salvadoraceae (e.g. Azima tetracantha) and Didiereoideae, 1 an endemic subfamily of the Didiereaceae. 2,3 Indeed, species from the latter subfamily are limited almost entirely to the Spiny Thicket and Succulent Woodland ecoregions in southern and southwestern Madagascar, which are characterised by hot temperatures and brief rainy seasons. 4 The 12 species of the Didiereoideae belong to four genera: Alluaudia, Alluaudiopsis, Decarya and Didierea. All members of this subfamily possess sharp, thick spines along their axes which protect their leaves 5,6 ; however, none of the closely related Didiereaceae from mainland Africa (Calyptrotheca, Ceraria, Portulacaria) possesses spines. 1 Experimental research on plant taxa in mainland Africa has demonstrated that the spines reduce foliage loss to browsing ungulates. 7,8 This protection suggests that the common ancestor of the Madagascan forms was subjected to intense leaf predation shortly after its arrival. Arakaki and colleagues 9 reported a diversification estimate for Madagascan Didiereoideae of 17 million years ago (mya) based on molecular data. These data imply an earlier date for the dispersal of the basal didiereoid from continental Africa to Madagascar. According to these authors, Alluaudia itself began diversifying only 11 mya. Ocampo and Columbus 10 support a slightly more ...