Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT) 2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT 2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT 2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT 2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT 2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.T he prefrontal cortex (PFC) is a brain region critical for many high-level cognitive processes, such as executive functions, attention, and working and contextual memories (1). Pyramidal neurons located in layer V of the PFC integrate excitatory glutamatergic inputs originating from both cortical and subcortical areas. The latter include the mediodorsal thalamus (MD) nuclei, which project densely to the medial PFC (mPFC) and are part of the neuronal network underlying executive control and working memory (2-4). Disruption of this network has been involved in cognitive symptoms of psychiatric disorders, such as schizophrenia (3, 5). These symptoms severely compromise the quality of life of patients and remain poorly controlled by currently available antipsychotics (3, 6).The PFC is densely innervated by serotonin (5-hydroxytryptamine, 5-HT) neurons originating from the dorsal and median raphe nuclei and numerous lines of evidence indicate a critical role of 5-HT in the control of emotional and cognitive functions depending on PFC activity (7,8). The modulatory action of 5-HT reflects its complex pattern of effects on cortical network activity, depending on the 5-HT receptor subtypes involved, and on receptor localization in pyramidal neurons, GABAergic interneurons or nerve terminals of afferent neurons.Among the 14 5-HT receptor subtypes, the 5-HT 2A receptor is a Gq protein-coupled receptor (9, 10) particularly enriched in the mPFC, with a predominant expression in apical dendrites of layer V pyramidal neurons (11)(12)(13)(14). Moreover, a low proportion of 5-HT 2A receptors was detected presynaptically on thalamocortical fibers (12,(15)(16)(17).Activation of 5-HT 2A receptors exerts complex effects upon the activity of the PFC network (18). The most prominent one is an increase in p...