Classical phenylketonuria (PKU) is a metabolic disorder caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). If untreated, accumulation of phenylalanine will damage the developing brain of affected individuals, leading to severe mental retardation. Here, we show that a liver-directed PAH gene transfer brought about long-term correction of hyperphenylalaninemia and behavioral improvement in a mouse model of PKU. A recombinant adeno-associated virus (AAV) vector carrying the murine PAH cDNA was constructed and administered to PAHdeficient mice (strain PAH enu2 ) via the portal vein. Within 2 weeks of treatment, the hyperphenylalaninemic phenotype improved and completely normalized in the animals treated with higher vector doses. The therapeutic effect persisted for 40 weeks in male mice, while serum phenylalanine concentrations in female animals gradually returned to pretreatment levels. Notably, this long-term correction of hyperphenylalaninemia was associated with a reversal of hypoactivity observed in PAH enu2 mice. While locomotory activity over 24 h and exploratory behavior were significantly decreased in untreated PAH enu2 mice compared with the age-matched controls, these indices were completely normalized in 12-month-old male PKU mice with lowered serum phenylalanine. These results demonstrate that AAV-mediated liver transduction ameliorated the PKU phenotype, including central nervous system dysfunctions.