Easy access to and advances in satellite remote sensing data has enabled enhanced analysis of ocean fronts, physical and ecologically important areas where water masses converge. Recent development of higher-resolution satellite imagery to detect ocean fronts provides the potential to better capture patterns and trends of ocean change and improve modelling and prediction efforts. This study examines the relationship between satellite data spatial resolution and its influence on the quantification of frontal characteristics, frontal quantity, length, strength and density. We also examine the relationship between Finite-Size Lyapunov Exponents and image resolution. We found higher spatial resolution leads to increased frontal quantity and decreased frontal length. Also, both strength and spatial density of fronts differ at various resolutions. The Finite-Size Lyapunov Exponent value does not change significantly with resolution. Knowledge of the impact of resolution on the quantification of frontal characteristics is crucial as it enables the exploration of novel experimental design to further facilitate the development of improved parameterization and uncertainties in ocean modelling/studies.