The hydrochlorination of alkenes has been extensively studied in research and is commonly featured in organic chemistry textbooks as an exemplification of the Markovnikov rule. However, the application of this reaction is typically limited to specific alkenes, such as highly substituted ones, styrenes, or strained systems. Conversely, monosubstituted or 1,2-disubstituted alkenes do not readily react with HCl gas or solutions of HCl gas at practical rates. The challenges associated with hydrochlorination reactions for these "non-activated" alkenes have spurred considerable research efforts over the past 30 years, which constitute the primary focus of this review. The discussion begins with classical polar hydrochlorinations, followed by metal-promoted radical hydrochlorinations, and concludes with a brief overview of recent anti-Markovnikov hydrochlorinations.