Active strike-slip faults Historical seismicity Paleoseismicity Temporal variations of focal mechanisms of earthquakes Rates of accumulation of strike-slip deformation a b s t r a c t The subject of this study is strike-slip fault zones, where temporal variations of accumulation in strike-slip deformation complicate the standard process of deformation accumulation and release during strong earthquakes. These temporal variations are expressed in the El Ghab segment of the Dead Sea Transform zone (DST, Eastern Mediterranean) and in the Talas-Fergana fault zone (Central Asia). According to Global Positioning System (GPS)data, the strike-slip deformations within these zones are not now accumulating or are accumulating at a rate that is significantly less than their average rate during the Holocene and Quaternary or the PlioceneeQuaternary. Simultaneously, weak transverse shortening has been measured in both zones by GPS. In both of these zones, strong earthquakes have not registered within the XX century, yet epochs of intensified seismicity (strong earthquakes) took place throughout history. In the southern and central parts of the El Ghab zone, there is evidence of 30 strong historical earthquakes of Ms ! 5.7; however, no instrumental earthquakes of Ms ! 5 have been identified. The temporal distribution of seismic energy released by these earthquakes demonstrates a 350 ± 50-year cycle. Values for the seismic energies released during the peak phases of these cycles are approximated by a sinusoid that suggests the possibility of a !1800-year cycle ("hyper-cycle"), which began around the 3rd century, reached its maximum in the 12th century, and has continued until now. A combination of geological, archaeoseismological, and geodetic data show that the rate of sinistral strike-slip deformation varied in the fault zone, probably in conformity with the variation of seismicity during the "hyper-cycle." In the Talas-Fergana fault zone, trenching and 14 C dating that was correlated with right lateral offsets, gave a possible preliminary estimate of the average rates of the Late Holocene strike slip of about 10 mm per year, with a decrease in the SE direction to 4 mme4.5 mm per year. These studies also showed that the slip in the Talas-Fergana fault zone was realized mainly during strong earthquakes. New trenching and 14 C dating of paleoearthquake records identified the epoch of seismicity intensification dating to the XIVeXVII centuries. These paleoearthquakes could produce a total dextral slip at several meters. Therefore, consideration of these epochs was necessary to determine a calculated average slip rate during the Late Holocene.The main shock and the strongest aftershocks of the Altai earthquake of September 27, 2003, with Ms ¼ 7.0 demonstrated a strike-slip focal mechanism with an NW-trending