The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36 -52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by Lcystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.The cysteine biosynthetic pathway plays an important role in incorporation of inorganic sulfur into organic compounds. In bacteria and plants, L-cysteine is the precursor of most sulfurcontaining metabolites including methionine and glutathione. Extracellular sulfate is first imported by specific transporters. Intracellular sulfate is then activated by ATP sulfurylase and adenosine-5Ј-phosphosulfate kinase to form adenosine-5Ј-phosphosulfate and 3Ј-phosphoadenosine 5Ј-phosphosulfate, respectively. These activated sulfates are further reduced to sulfide. Sulfide then reacts with O-acetylserine, which is produced from serine and acetyl-CoA by serine acetyltransferase (SAT, 1 EC 2.3.1.30). This final reaction forming L-cysteine, by transfer of the alanyl moiety of O-acetylserine to sulfide, is catalyzed by L-cysteine synthase (CS; O-acetyl-L-serine (thiol)-lyase, EC 4.2.99.8). In contrast to bacteria and plants, animals are presumed to lack the sulfur assimilation pathway and thus require exogenous methionine as a sulfur source. Biochemical studies using purified (1-4) and recombinant enzymes (5), as well as a genetic approach using a yeast two-hybrid system, revealed that CS and SAT form a heteromeric complex. SAT activity and O-acetylserine availability are the major regulatory factors in the control of the L-cysteine production in plants (6, 7). Cytosolic isoforms of the SAT from Citrullus vulgaris and A...