The clinical use of noninvasive cortical stimulation procedures is hampered by the limited duration of the analgesic effects and the need to perform stimulation in hospital settings. Here, we tested the feasibility and pilot efficacy of an internet-based system for at-home, long-duration, medically controlled transcranial motor cortex stimulation (H-tDCS), via a double-blinded, shamcontrolled trial in patients with neuropathic pain refractory to standard-of-care drug therapy. Each patient was first trained at hospital, received a stimulation kit, allotted a password-protected Web space, and completed daily tDCS sessions during 5 weeks, via a Bluetooth connection between stimulator and a minilaptop. Each session was validated and internet-controlled by hospital personnel. Daily pain ratings were obtained during 11 consecutive weeks, and afterwards via iterative visits/phone contacts. Twenty full procedures were completed in 12 consecutive patients (500 daily tDCS sessions, including 20% sham). No serious adverse effects were recorded. Superficial burning at electrode position occurred in 2 patients, and nausea/headache in two others, all of whom wished to pursue stimulation. Six out of the 12 patients achieved satisfactory relief on a scale combining pain scores, drug intake, and quality of life. Daily pain reports correlated with such combined assessment, and differentiated responders from nonresponders without overlap. Clinical improvement in responders could last up to 6 months. Five patients asked to repeat the whole procedure when pain resumed again, with comparable results. At-home, long-duration tDCS proved safe and technically feasible, and provided long-lasting relief in 50% of a small sample of patients with drug-resistant neuropathic pain.