IntroductionThe presence of cognitive dysfunctions in Multiple Sclerosis (MS) has been well described as one of the most common co-morbidities [1][2][3], with a prevalence ranging from 45% to 65% [4]. The most affected cognitive domains in MS are memory, visuospatial perception, executive functions, attention and information processing speed [5].Although the cerebellum has been traditionally associated with motor control, recently a growing body of clinical and experimental evidences has suggested that it may be also involved in non-motor functions [6][7][8]. In fact, it has been shown that cerebellar abnormalities, e.g. lesions, are associated with cognitive impairment as measured by neuropsysiological tests [9]. Thus, evidences suggest that the cerebellum has an important role in monitoring sensory information and providing adaptation of both motor and non-motor functions to perform contextually relevant behaviours [10,11].The cognitive role of the cerebellum is mainly due to its strong connections with several higher-level cortical regions, such as with the controlateral cerebral hemispheres in both feed forward and feedback directions. The feed forward loop (Figure 1 in blue) connects cortical areas via middle cerebellar peduncle (MCP) with deep cerebellar nuclei, including the dentate nucleus (DN) (afferent pathway). The feedback loop (Figure 1 in orange) connects the deep cerebellar nuclei with motor cortex, via the superior cerebellar peduncle (SCP), the red nucleus and the thalamus (Th) (efferent pathway) [12,13].Disconnections of the fibers to the thalamus, negatively involve the limbic circuitry avoiding the mediation and regulation of many cognitive functions [14,15]. Although many studies have shown a strong association between thalamic atrophy and cognitive function [16][17][18], no one focused on its microstructural changes, as well as on abnormalities of MCP, SCP and DN, and on their relationships to cognitive functions in MS.Diffusion tensor imaging (DTI) is one of the most sensitive methods for detecting subtle alterations of white matter [19] (WM) by evaluating the directional movement of water molecules in the brain. Analysis of DTI images could indeed distinguish between regions where fibers present a strong alignment from those with a lower coherence. Diffusion properties are summarized by several indices, in particular by fractional anisotropy (FA) that refers to the degree to which diffusion is direction-dependent. FA is used to quantify the changes in WM microstructure, which might be related to development or progression of a specific disease [20].The aim of this study was to investigate a group of patients affected by relapsing-remitting multiple sclerosis with (RR-MSc) and without (RR-MSnc) cerebellar signs, in order to determine the alteration of FA in the Th, MCP, SCP and DN and their correlation to cognitive functions, as assessed by neuropsysiological tests. In particular, we examined two hypotheses: