Histone H3K4 methylation is catalysed by the multi-protein complex known as the Set1/COMPASS or MLL/COMPASS-like complex, an element that is highly evolutionarily conserved from yeast to humans. However, the components and mechanisms by which the COMPASS-like complex targets the H3K4 methylation of plant pathogenic genes in fungi remain elusive. Here we present a comprehensive analysis combining biochemical, molecular, and genome-wide approaches to characterize the roles of the COMPASS-like family in Magnaporthe oryzae, a model plant fungal pathogen. We purified and identified six conserved subunits of COMPASS from the rice blast fungus M. oryzae, i.e., MoBre2 (Cps60/ASH2L), MoSpp1 (Cps40/Cfp1), MoSwd2 (Cps35), MoSdc1 (Cps25/DPY30), MoSet1 (MLL/ALL) and MoRbBP5 (Cps50), using an affinity tag on MoBre2. We determined the SPRY domain of MoBre2 can recognize directly with DPY30 domain of MoSdc1 in vitro. Furthermore, we found that deletion of the genes encoding COMPASS subunits of MoBre2, MoSpp1 and MoSwd2 caused similar defects regarding invasive hyphal development and pathogenicity. Genome-wide profiling of H3K4me3 revealed that the it has remarkable co-occupancy at the TSS regions of target genes. Significantly, these target genes are often involved in spore germination and pathogenesis. Decreased gene expression caused by the deletion of MoBre2, MoSwd2 or MoSpp1 gene was highly correlated with decrease in H3K4me3. Taken together, these results suggest that MoBre2, MoSpp1, and MoSwd2 function as a whole COMPASS complex, contributing to fungal development and pathogenesis by regulating H3K4me3-targeted genes in M. oryzae.