Abstract:Derived digital elevation models (DEMs) are high-resolution acoustic technology that has proven to be a crucial morphometric data source for research into submarine environments. We present a morphometric analysis of forty deep seafloor edifices located to the west of Canary Islands, using a 150 m resolution bathymetric DEM. These seafloor structures are characterized as hydrothermal domes and volcanic edifices, based on a previous study, and they are also morphostructurally categorized into five types of edifice following an earlier classification. Edifice outline contours were manually delineated and the morphometric variables quantifying slope, size and shape of the edifices were then calculated using ArcGIS Analyst tools. In addition, we performed a principal component analysis (PCA) where ten morphometric variables explain 84% of the total variance in edifice morphology. Most variables show a large spread and some overlap, with clear separations between the types of mounds. Based on these analyses, a morphometric growth model is proposed for both the hydrothermal domes and volcanic edifices. The model takes into account both the size and shape complexity of these seafloor structures. Grow occurs via two distinct pathways: the volcanoes predominantly grow upwards, becoming large cones, while the domes preferentially increase in volume through enlargement of the basal area.