Abstract:We report on a fragment of the quasicrystal-bearing CV3 carbonaceous chondrite Khatyrka recovered from fine-grained, clay-rich sediments in the Koryak Mountains, Chukotka (Russia). We show higher melting-point silicate glass cross-cutting lower melting-point Al-Cu-Fe alloys, as well as unambiguous evidence of a reduction-oxidation reaction history between Al-Cu-Fe alloys and silicate melt. The redox reactions involve reduction of FeO and SiO2 to Fe and Fe-Si metal, and oxidation of metallic Al to Al2O3, occurr… Show more
“…1) clearly attached to the meteorite fragment (dark areas in the upper panel of Fig. 1), as typically observed for other fragments of the Khatyrka meteorite 4,7,13,14 . Detailed examination by scanning electron microscopy, single-crystal X-ray diffraction, micro-computed tomography and transmission electron microscopy of fragments from Grain 126 associated to proxidecagonite revealed the presence of trevorite, diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, stishovite, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, taenite, Al-bearing taenite, steinhardtite, decagonite, hollisterite, stolperite and kryachkoite 4,5,7,13,15–17 .…”
Section: Resultssupporting
confidence: 76%
“…1), as typically observed for other fragments of the Khatyrka meteorite 4,7,13,14 . Detailed examination by scanning electron microscopy, single-crystal X-ray diffraction, micro-computed tomography and transmission electron microscopy of fragments from Grain 126 associated to proxidecagonite revealed the presence of trevorite, diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, stishovite, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, taenite, Al-bearing taenite, steinhardtite, decagonite, hollisterite, stolperite and kryachkoite 4,5,7,13,15–17 . The recovery of different Al-Ni-Fe crystalline (steinhardtite) and QC (decagonite) intermetallic phases, motivated a careful search for other metallic fragments, which led to the discovery of a particle with composition close to that of the known Al-Ni-Fe decagonal QC but with different diffraction characteristics.…”
Section: Resultssupporting
confidence: 69%
“…All recovered fragments of Khatyrka including Grain 126 have been shown to include non-metallic minerals with CV3-like oxygen isotopic compositions 4,7,13,14 confirming their common meteoritic origin. The Khatyrka meteorite formed 4.5 billion years ago during the earliest stages of the solar system and contains evidence of a heterogeneous distribution of pressures and temperatures during impact shock, in which some portions of the meteorite reached at least 5–10 GPa and 1200–1500 °C.…”
We report the discovery of Al34Ni9Fe2, the first natural known periodic crystalline approximant to decagonite (Al71Ni24Fe5), a natural quasicrystal composed of a periodic stack of planes with quasiperiodic atomic order and ten-fold symmetry. The new mineral has been approved by the International Mineralogical Association (IMA 2018-038) and officially named proxidecagonite, which derives from its identity to periodic approximant of decagonite. Both decagonite and proxidecagonite were found in fragments from the Khatyrka meteorite. Proxidecagonite is the first natural quasicrystal approximant to be found in the Al-Ni-Fe system. Within this system, the decagonal quasicrystal phase has been reported to transform at ~940 °C to Al13(Fe,Ni)4, Al3(Fe,Ni)2 and the liquid phase, and between 800 and 850 °C to Al13(Fe,Ni)4, Al3(Fe,Ni) and Al3(Fe,Ni)2. The fact that proxidecagonite has not been observed in the laboratory before and formed in a meteorite exposed to high pressures and temperatures during impact-induced shocks suggests that it might be a thermodynamically stable compound at high pressure. The most prominent structural motifs are pseudo-pentagonal symmetry subunits, such as pentagonal bipyramids, that share edges and corners with trigonal bipyramids and which maximize shortest Ni–Al over Ni–Ni contacts.
“…1) clearly attached to the meteorite fragment (dark areas in the upper panel of Fig. 1), as typically observed for other fragments of the Khatyrka meteorite 4,7,13,14 . Detailed examination by scanning electron microscopy, single-crystal X-ray diffraction, micro-computed tomography and transmission electron microscopy of fragments from Grain 126 associated to proxidecagonite revealed the presence of trevorite, diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, stishovite, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, taenite, Al-bearing taenite, steinhardtite, decagonite, hollisterite, stolperite and kryachkoite 4,5,7,13,15–17 .…”
Section: Resultssupporting
confidence: 76%
“…1), as typically observed for other fragments of the Khatyrka meteorite 4,7,13,14 . Detailed examination by scanning electron microscopy, single-crystal X-ray diffraction, micro-computed tomography and transmission electron microscopy of fragments from Grain 126 associated to proxidecagonite revealed the presence of trevorite, diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, stishovite, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, taenite, Al-bearing taenite, steinhardtite, decagonite, hollisterite, stolperite and kryachkoite 4,5,7,13,15–17 . The recovery of different Al-Ni-Fe crystalline (steinhardtite) and QC (decagonite) intermetallic phases, motivated a careful search for other metallic fragments, which led to the discovery of a particle with composition close to that of the known Al-Ni-Fe decagonal QC but with different diffraction characteristics.…”
Section: Resultssupporting
confidence: 69%
“…All recovered fragments of Khatyrka including Grain 126 have been shown to include non-metallic minerals with CV3-like oxygen isotopic compositions 4,7,13,14 confirming their common meteoritic origin. The Khatyrka meteorite formed 4.5 billion years ago during the earliest stages of the solar system and contains evidence of a heterogeneous distribution of pressures and temperatures during impact shock, in which some portions of the meteorite reached at least 5–10 GPa and 1200–1500 °C.…”
We report the discovery of Al34Ni9Fe2, the first natural known periodic crystalline approximant to decagonite (Al71Ni24Fe5), a natural quasicrystal composed of a periodic stack of planes with quasiperiodic atomic order and ten-fold symmetry. The new mineral has been approved by the International Mineralogical Association (IMA 2018-038) and officially named proxidecagonite, which derives from its identity to periodic approximant of decagonite. Both decagonite and proxidecagonite were found in fragments from the Khatyrka meteorite. Proxidecagonite is the first natural quasicrystal approximant to be found in the Al-Ni-Fe system. Within this system, the decagonal quasicrystal phase has been reported to transform at ~940 °C to Al13(Fe,Ni)4, Al3(Fe,Ni)2 and the liquid phase, and between 800 and 850 °C to Al13(Fe,Ni)4, Al3(Fe,Ni) and Al3(Fe,Ni)2. The fact that proxidecagonite has not been observed in the laboratory before and formed in a meteorite exposed to high pressures and temperatures during impact-induced shocks suggests that it might be a thermodynamically stable compound at high pressure. The most prominent structural motifs are pseudo-pentagonal symmetry subunits, such as pentagonal bipyramids, that share edges and corners with trigonal bipyramids and which maximize shortest Ni–Al over Ni–Ni contacts.
“…Further out, there are five points related to 3-fold rotational axes arranged in a similar way, forming a larger pentagon. Such relative arrangement of the rotational axes is consistent with IQC structure and previous reports[17] [18], proving clearly that the extra layer is of IQC structure, different from the substrate λ phase.Further, the result of elemental mapping supports this conclusion. The columnlike structure has been identified as λ-phase (or ω-phase) with chemical formulaof Al 13 Fe 4 [4] [5] or Al 7 Cu 2 Fe [19] [20] in previous reports.…”
Icosahedral quasicrystals display irregular shape if it is embedded in bulk material. If it has free surface, it has well-defined facets, reflecting its unique 5-, 3-, and 2-fold rotational symmetries. In this study, an Al-Cu-Fe alloy with nominal composition of Al 65 Cu 20 Fe 15 was prepared by arc melting and the microstructure was studied by using Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy, and Electron Back Scattering Diffraction (EBSD). On the surface of λ crystalline phase, an extra layer is found. EBSD from this layer revealed 5-, 3-, and 2-fold rotational symmetries, demonstrating the icosahedral quasicrystalline structure. Further, it has been found that the icosahedral quasicrystalline extra layer and the λ substrate have orientation relationship revealed by the coincidences of Kikuchi bands and poles on the EBSD patterns. This report is important to future studies regarding the formation of icosahedral quasicrystalline phase and thin film preparation related to icosahedral quasicrystalline phase.
“…The Al-Cu-Fe and Al-Pd-Mn QCs have been extensively studied due to their stability, unique structural model, and potential industrial applications, such as wear-resistant coatings [6][7][8][9][10]. The formation, phase stability, and structure of Al-Cu-Fe QCs have been notably studied since the first natural QCs discovered in the Al-Cu-Fe system a decade ago [11][12][13][14][15][16][17][18][19][20][21]. Meanwhile, a variety of Al-based complex metallic phases have been synthesized and analyzed as their chemical compositions and crystal structures are quite similar to their quasicrystal counterparts [22][23][24][25][26].…”
A cubic ternary phase Al73.8Pd13.6Fe12.6 (designated C′ phase), with very high Al content (Al/TM = 2.82, TM denotes transition metal) was prepared by spark plasma sintering (SPS). Its crystal structure was determined by combing single-crystal X-ray diffraction (SXRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) measurements. The crystal structure of the new phase can be described with a small unit cell (a = 7.6403(2) Å; space group Pm3, No. 200) as that of Al2.63Rh (a = 7.6692(1) Å; space group P23, No. 195) while different from those of the reported Al39Pd21Fe2 (a = 15.515(1) Å; space group Fm3, No. 202) and Al69Pd17Fe14 (a = 15.3982(2) Å; space group Im3, No. 204) compounds, which both adopt a double length unit cell in the Al–Pd–Fe system. The mechanism of distributing more Al atoms in the new phase was compared with that of the Al2.63Rh phase by analyzing their site symmetry and the corresponding site of occupancies (SOF). Furthermore, relations of the C′ phase to the reported Al69Pd17Fe14 (designated C1 phase) and Al39Pd21Fe2 (designated C2 phase) phases were investigated by analyzing their building units with the “nanocluster” method in the ToposPro package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.