This paper details our further experiments pertaining to the influence of low frequency electromagnetic fields (LF EMF) on the growth dynamics of two wild-type Saccharomyces cerevisiae strands. We opted to explore frequencies beyond the usual 50–60 Hz range, motivated by the ion parametric resonance theory and several studies which discovered and recorded endogenous biosignals in various Saccharomyces cerevisiae strands in the 0.4–2.0 kHz frequency range, most probably stemming from microtubules. Both yeast strands used in our experiments have been subjected to continuous 66-hour session of LF EMF exposure (frequencies 1.2, 1.4, 1.6, 1.8, and 2.0 kHz; average magnetic flux density 2.43 mT) under identical ambient conditions. Experiment results indicate a frequency-dependent proliferative response of both yeast strands.