Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Exploring photothermal nanomaterials is essential for new energy and biomedical applications; however, preparing materials with intense absorption, highly efficient light‐to‐heat conversion, and enhanced photostability still faces the enduring challenge. Herein, the study synthesizes atomic‐thin (≈1.6 nm) 2D copper sulfide (AT‐CuS) plasmonic nanocrystals and find its extraordinary photothermal conversion efficiency (PCE) reaching up to 94.3% at the second near‐infrared (NIR‐II) window. Photophysical mechanism studies reveal that the strong localized surface plasmon resonance (LSPR) and out‐of‐plane size effect of AT‐CuS induce strong optical absorption and non‐equilibrium carrier scattering, resulting in a significant carrier‐phonon coupling (7.18 × 1017 J K−1 s−1 m−3), ultimately enhancing the heat generation. Such a photothermal nanomaterial demonstrates at leastmes stronger NIR‐II photoacoustic (PA) signal intensity than that of most commonly used miniature gold nanorods, together with greater biocompatibility and photo‐/thermal‐stability, enabling noninvasive PA imaging of brain microvascular in living animals. This work provides an insight into the rational exploration of superb NIR‐II photothermal and photoacoustic agents for future practical utilizations.
Exploring photothermal nanomaterials is essential for new energy and biomedical applications; however, preparing materials with intense absorption, highly efficient light‐to‐heat conversion, and enhanced photostability still faces the enduring challenge. Herein, the study synthesizes atomic‐thin (≈1.6 nm) 2D copper sulfide (AT‐CuS) plasmonic nanocrystals and find its extraordinary photothermal conversion efficiency (PCE) reaching up to 94.3% at the second near‐infrared (NIR‐II) window. Photophysical mechanism studies reveal that the strong localized surface plasmon resonance (LSPR) and out‐of‐plane size effect of AT‐CuS induce strong optical absorption and non‐equilibrium carrier scattering, resulting in a significant carrier‐phonon coupling (7.18 × 1017 J K−1 s−1 m−3), ultimately enhancing the heat generation. Such a photothermal nanomaterial demonstrates at leastmes stronger NIR‐II photoacoustic (PA) signal intensity than that of most commonly used miniature gold nanorods, together with greater biocompatibility and photo‐/thermal‐stability, enabling noninvasive PA imaging of brain microvascular in living animals. This work provides an insight into the rational exploration of superb NIR‐II photothermal and photoacoustic agents for future practical utilizations.
A fundamental understanding of hot carrier relaxation in metal nanostructures is essential for realizing their application potential in energy conversion and photocatalysis. Despite previous investigations of the relaxation of hot carriers generated by surface plasmon resonance (SPR) excitation and interband transitions (IBTs), the hot carrier relaxation lifetimes and their associated mechanisms remain unclear. Herein, we demonstrate two distinct hot carrier relaxation channels in gold plasmonic nanostructures. The experimental observations reveal that the hot carrier relaxation is faster following SPR excitation than that from IBTs in gold nanoparticles and nanorods. The experimental results and theoretical calculations indicate that the numerous plasmon-induced hot carriers undergo surface-mediated carrier−carrier scattering in large gold nanostructures, whereas almost all IBT-induced hot carriers experience bulk carrier−carrier scattering. These findings advance our understanding of hot carrier relaxation and contribute to a clearer microscopic description of scattering channels in plasmonic nanostructures.
Metallic MXenes are promising two-dimensional materials for energy storage, (opto)electronics, and photonics due to their high electrical conductivity and strong light−matter interaction. Energy dissipation in MXenes is fundamental for photovoltaic and photothermal applications.Here we apply ultrafast laser spectroscopy across a broad time range (femtoto microseconds) to study the cooling dynamics of electrons and lattice in emerging Ti 2 CT x thin films compared to widely studied Ti 3 C 2 T x thin films. The carrier cooling time in Ti 2 CT x is persistently ∼2.6 ps without a hotphonon bottleneck. After hot carrier cooling is completed, the transient absorption spectra of Ti 2 CT x MXene can be described well by the thermochromic effect. Heat dissipation in MXene thin films occurs over hundreds of nanoseconds with thermal diffusivities ∼0.06 mm 2 s −1 for Ti 2 CT x and ∼0.02 mm 2 s −1 for Ti 3 C 2 T x , likely due to inefficient interflake heat transfer. Our results unravel the energy dissipation dynamics in Ti 2 CT x films, showcasing potential applications in energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.