Abstract. Due to their large source strengths, biogenic volatile organic compounds (BVOCs) are important for atmospheric 10 chemistry. Terpenoids, mainly consisting of isoprene, monoterpenes and sesquiterpenes, are the dominant BVOC class.There are two general mechanisms for their emissions: emissions directly from de novo biosynthesis (de novo emissions) and emissions from organs wherein the terpenoids are stored (pool emissions). While isoprene emissions are pure de novo emissions, the mechanism for monoterpene and sesquiterpene emissions is not always distinct. In particular, conifers have large storage pools and both mechanisms may contribute to the emissions. 15To obtain more insight into the mechanisms of the terpenoid emissions from Eurasian conifers, we conducted 13 CO 2 and 13 Cglucose labelling studies with Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.). The results from the labelling experiments were further compared to diurnal modulations measured for the emission fluxes of the respective terpenoids, as well as to their release from reservoirs in needles and bark tissue.The comparison allowed the following comprehensive statements for the investigated conifers. Consistent to other studies, 20 we found that constitutive monoterpene emissions mainly originate from storage pools but with compound-specific fractions of de novo emissions. In contrast, stress-induced monoterpene and sesquiterpene emissions are entirely of de novo nature.We also found at least three different carbon sources for monoterpene and sesquiterpene biosynthesis. These sources differ with respect to the timescale after which the recently assimilated carbon reappears in the emitted terpenoids. Carbon directly obtained from assimilated CO 2 has a short turnover time of few hours, while carbon from other alternative carbon sources 25 has intermediate turnover times of few days and even longer. Terpenoid biosynthesis is not restricted to the presence of light and the carbon for terpenoid biosynthesis can be delivered from the alternative carbon sources. In particular for sesquiterpenes, there can be substantial de novo emissions in darkness reaching up to around 60 % of the daytime emissions.