Cyanide oxygenase (CNO) from Pseudomonas fluorescens NCIMB 11764 catalyzes the pterin-dependent oxygenolytic cleavage of cyanide (CN) to formic acid and ammonia. CNO was resolved into four protein components (P1 to P4), each of which along with a source of pterin cofactor was obligately required for CNO activity. Component P1 was characterized as a multimeric 230-kDa flavoprotein exhibiting the properties of a peroxide-forming NADH oxidase (oxidoreductase) (Nox). P2 consisted of a 49.7-kDa homodimer that showed 100% amino acid identity at its N terminus to NADH peroxidase (Npx) from Enterococcus faecalis. Enzyme assays further confirmed the identities of both Nox and Npx enzymes (specific activity, 1 U/mg). P3 was characterized as a large oligomeric protein (ϳ300 kDa) that exhibited cyanide dihydratase (CynD) activity (specific activity, 100 U/mg). Two polypeptides of 38 kDa and 43 kDa were each detected in the isolated enzyme, the former believed to confer catalytic activity based on its similar size to other CynD enzymes. The amino acid sequence of an internal peptide of the 43-kDa protein was 100% identical to bacterial elongation factor Tu, suggesting a role as a possible chaperone in the assembly of CynD or a multienzyme CNO complex. The remaining P4 component consisted of a 28.9-kDa homodimer and was identified as carbonic anhydrase (specific activity, 2,000 U/mg). While the function of participating pterin and the roles of Nox, Npx, CynD, and CA in the CNO-catalyzed scavenging of CN remain to be determined, this is the first report describing the collective involvement of these four enzymes in the metabolic detoxification and utilization of CN as a bacterial nitrogenous growth substrate.From its role as an important prebiotic reactant to its notorious reputation as a genocidal and homicidal agent, the significance of cyanide (referred to herein as CN and indicating the free form, which exists as either CN Ϫ or HCN) to biology has a long history. However, gaps in our understanding of how this toxic substance is tolerated and metabolized in nature remain. Effective means of detoxifying cyanide have presumably evolved given the preponderance of cyanogenic organisms in nature. For example, a large number of plant species (ϳ2,000) as well as some fungi and bacteria are known to be cyanogenic (25,28). Bacteria exhibit a range of natural resistance to cyanide related in part to their ability to synthesize cyanide-detoxifying enzymes. The added ability to assimilate metabolites derived therefrom accounts further for the un-