Genes that play a role in the senescent arrest of cellular replication are likely to be overexpressed in human diploid fibroblasts (HDF) derived from subjects with Werner syndrome (WS) because these cells have a severely curtailed replicative life span. To identify some of these genes, a cDNA library was constructed from WS HDF after they had been serum depleted and repleted (5 days in medium containing 1% serum followed by 24 h in medium containing 20% serum). Differential screening of 7,500 colonies revealed 102 clones that hybridized preferentially with [32PJcDNA derived from RNA of WS cells compared with [32PJcDNA derived from normal HDF. Cross-hybridization and partial DNA sequence determination identified 18 independent gene sequences, 9 of them known and 9 unknown. The known genes included oal(I) procollagen, a2(I) procollagen, fibronectin, ferritin heavy chain, insulinlike growth factor-binding protein-3 (IGFBP-3), osteonectin, human tissue plasminogen activator inhibitor type 1, thrombospondin, and aB-crystallin. The nine unknown clones included two novel gene sequences and seven additional sequences that contained both novel segments and the Alu class of repetitive short interspersed nuclear elements; five of these seven Alu+ clones also contained the long interspersed nuclear element 1 (KpnI) family of repetitive elements. Northern (RNA) analysis, using the 18 sequences as probes, showed higher levels of these mRNAs in WS HDF than in normal HDF. Five selected mRNAs studied in greater detail [al(I) procollagen, fibronectin, insulinlike growth factor-binding protein-3, WS3-10, and WS9-14] showed higher mRNA levels in both WS and late-passage normal HDF than in earlypassage normal HDF at various intervals following serum depletion/repletion and after subculture and growth from sparse to high-density confluent arrest. These results indicate that senescence of both WS and normal HDF is accompanied by overexpression of similar sets of diverse genes which may play a role in the senescent arrest of cellular replication and in the genesis of WS, normal biological aging, and attendant diseases.Biological aging, an inevitable process in multicellular organisms, features two sets of interdependent events: functional decline and an exponential rise in the incidence of degenerative and neoplastic diseases (27). The mechanism of aging remains unknown, but it seems clear that the progressive loss of cellular replicative capacity in many tissues is inextricably involved (26, 27, 51, 55