Social network analysis (SNA) is a core pursuit of analyzing social networks today. In addition to the usual statistical techniques of data analysis, these networks are investigated using SNA measures. It helps in understanding the dependencies between social entities in the data, characterizing their behaviors and their effect on the network as a whole and over time. Therefore, this article attempts to provide a succinct overview of SNA in diverse topological networks (static, temporal, and evolving networks) and perspective (ego‐networks). As one of the primary applicability of SNA is in networked data mining, we provide a brief overview of network mining models as well; by this, we present the readers with a concise guided tour from analysis to mining of networks.
This article is categorized under:
Application Areas > Science and Technology
Technologies > Machine Learning
Fundamental Concepts of Data and Knowledge > Human Centricity and User Interaction
Commercial, Legal, and Ethical Issues > Social Considerations