Clarifying the relationship between carbon storage and ecological risks is critical to ensuring regional sustainable development. Land use changes caused by land use policy invariably result in substantial changes in carbon storage and ecological risks. The link between carbon storage and ecological risks in green space is still unknown, even though green space is an essential ecological function carrier. Based on the natural development (NP) status, formulated by the Blackland Protection and Utilization (BPU) policy document, this study compared and projected the carbon storage and landscape ecological risk characteristics of green space in Heilongjiang Province (HLJP) for 2030. It also quantitatively assessed the interactions and synergistic changes of the two variables in terms of coupled coordination relationships, quantitative correlations, and spatial correlations. The results demonstrated the following: (1) the green space evolution of HJLP under the BPU scenario is significantly more drastic than under the NP scenario; (2) In 2020–2030, the NP scenario’s evolution of green space results in the ecosystem losing 323.51 × 106 t of carbon storage, compared to the BPU scenario’s loss of just 216.07 × 106 t. The BPU policy will increase the agglomeration of high-risk ranges in the northeast and southwest will but decrease the overall landscape ecological risk level of green space; (3) BPU policy will prevent the system’s orderly development and benign coupling, but it will increase the interdependence between carbon storage and landscape ecological risks in green space; (4) Green space exchange and loss will result in the simultaneous rise or decrease in both variables. The magnitude of carbon storage increase owing to green space expansion tends to increase simultaneously with the magnitude of landscape ecological risk reduction. To a certain extent, the HLJP black land conservation and utilization policy can improve carbon storage and ensure ecological security, and the matching of dominant regions with the status of the landscape evolutionary process can support future carbon-neutral actions.