Evolution and Stylistic Characteristics of Ancient Chinese Stone Carving Decoration LSTM-DL Approach with Image Visualization
Yuan Tian
Abstract:In recent years, advancements in data analysis techniques and deep learning algorithms have revolutionized the field of art and cultural studies. Ancient Chinese stone carving decoration holds significant historical and cultural value, reflecting the artistic and stylistic evolution of different periods. This paper explored the Weighted Long Short-Term Memory Deep Learning (WLSTM – DL) evolution and stylistic characteristics of ancient Chinese stone carving decoration through the application of image visualiza… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.