Due to globalization and the resulting increase in competition on the market, products must be produced more and more cheaply, especially in series production, because buyers expect new variants or even completely new products in ever shorter cycles. Injection molding is the most important production process for manufacturing plastic components in large quantities. However, the conventional production of a mold is extremely time-consuming and costly, which creates a contradiction to the fast pace of the market. Additive tooling is an area of application of additive manufacturing, which in the field of injection molding is preferably used for the prototype production of mold inserts. This allows injection molding tools to be produced faster and more cheaply than through the subtractive manufacturing of metal tools. Material Jetting processes using polymers (MJT-UV/P), also called Polyjet Modeling (PJM), have a great potential for use in additive tooling. Due to the poorer mechanical and thermal properties compared to conventional mold insert materials, e.g. steel or aluminum, the previously used design principles cannot be applied. Accordingly, new design guidelines are necessary, which are developed in this paper. The necessary information is obtained with the help of a systematic literature research. The design guidelines are mapped in a uniform design guide, which is structured according to the design process of injection molds. The guidelines do not only refer to the constructive design of the injection mold or the polymer mold insert, but to the entire design process and describe the four phases of planning, conception, development and realization. Particular attention is paid to the special geometric designs of a polymer mold insert and the thermomechanical properties of the mold insert materials. As a result, design guidelines are available that are adapted to the special requirements of additive tooling of molds inserts made of plastics for injection molding.