The historical origins of the game theoretic predator-prey pursuit problem can be traced back to Benda, et al., 1985 [1]. Their work adapted the predator-prey ecology problem into a pursuit environment which focused on the dynamics of cooperative behavior between predator agents. Modifications to the predator-prey ecology problem [2] have been implemented to understand how variations to predator [3] and prey [3][4][5] attributes, including communication [6], can modify dynamic interactions between entities that emerge within that environment [7][8][9]. Furthermore, the predator-prey pursuit environment has become a testbed for simulation experiments with computational multiagent systems [10][11][12]. This article extends the theoretical contributions of previous work by providing 1) additional variations to predator and prey attributes for simulated multiagent systems in the pursuit problem, and 2) military-relevant predator-prey environments simulating highly dynamic, tactical edge scenarios that Soldiers might encounter on future battlefields. Through this exploration of simulated tactical edge scenarios with computational multiagent systems, Soldiers will have a greater chance to achieve overmatch on the battlefields of tomorrow.