. (2011). Effect of vapor bubbles on velocity fluctuations and dissipation rates in bubbly Rayleigh-Bénard convection. Physical Review E, 84(3), 036312-1/7. [036312]. DOI: 10.1103/PhysRevE.84.036312 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Numerical results for kinetic and thermal energy dissipation rates in bubbly Rayleigh-Bénard convection are reported. Bubbles have a twofold effect on the flow: on the one hand, they absorb or release heat to the surrounding liquid phase, thus tending to decrease the temperature differences responsible for the convective motion; but on the other hand, the absorbed heat causes the bubbles to grow, thus increasing their buoyancy and enhancing turbulence (or, more properly, pseudoturbulence) by generating velocity fluctuations. This enhancement depends on the ratio of the sensible heat to the latent heat of the phase change, given by the Jakob number, which determines the dynamics of the bubble growth.