2022
DOI: 10.3389/fspas.2021.763276
|View full text |Cite
|
Sign up to set email alerts
|

Evolution of Hot and Dense Stellar Interiors: The Role of the Weak Interaction Processes

Abstract: The evolution of the hot and dense interior of massive stars has aroused the intense interest of researchers the last more than three decades. In this article, the role of the semi-leptonic weak interaction processes of leptons (involving neutrinos) with nucleons and nuclei in the late stages of stellar evolution, as well as in the relevant terrestrial neutrino detection experiments, is reviewed. Such processes play crucial role for the massive stars’ evolution in the final stages of their life, and specifical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 85 publications
(253 reference statements)
0
3
0
Order By: Relevance
“…From Si burning (Si-α) until CC, the seventh and eighth vertical panel in Figure 18, there are little differences in the relative strength of individual β decays. At this stage of evolution, the expression of Fe-group β decays is metallicity independent, and β − decays remain subdominant until t cc  10 −1 hr (Patton et al 2017a(Patton et al , 2017bKato et al 2017Kato et al , 2020aKosmas et al 2022).…”
Section: Six Metallicitiesmentioning
confidence: 99%
See 1 more Smart Citation
“…From Si burning (Si-α) until CC, the seventh and eighth vertical panel in Figure 18, there are little differences in the relative strength of individual β decays. At this stage of evolution, the expression of Fe-group β decays is metallicity independent, and β − decays remain subdominant until t cc  10 −1 hr (Patton et al 2017a(Patton et al , 2017bKato et al 2017Kato et al , 2020aKosmas et al 2022).…”
Section: Six Metallicitiesmentioning
confidence: 99%
“…Ongoing stellar neutrino searches aim to detect pre-supernova neutrinos, which allow new tests of stellar and neutrino physics (e.g., Brocato et al 1998;Odrzywolek et al 2004;Kutschera et al 2009;Odrzywolek 2009;Patton et al 2017aPatton et al , 2017bKato et al 2017Kato et al , 2020aYusof et al 2021;Kosmas et al 2022) and enable an early alert of an impending CC supernova to the electromagnetic and gravitational-wave communities Mukhopadhyay et al 2020;Al Kharusi et al 2021). They also aim to explore the diffuse supernova neutrino background (Bisnovatyi-Kogan & Seidov 1984;Krauss et al 1984;Hartmann & Woosley 1997;Ando & Sato 2004;Porciani et al 2004;Horiuchi et al 2009;Beacom 2010;Anandagoda et al 2020;Suliga 2022;Anandagoda et al 2023) and neutrinos from the helium-core nitrogen flash (Serenelli & Fukugita 2005), compact object mergers (Kyutoku & Kashiyama 2018;Lin & Lunardini 2020), tidal disruptions of stars (Lunardini & Winter 2017;Reusch et al 2022;Winter & Lunardini 2023), and pulsational pair-instability supernovae (Leung et al 2020).…”
Section: Introductionmentioning
confidence: 99%
“…The Supernova Early Warning System is a global network of neutrino experiments sensitive to supernova neutrinos (Al Kharusi et al 2021) that includes multikiloton detectors such as KamLAND (Araki et al 2005), Borexino (Borexino Collaboration et al 2018, SNO+ (Andringa et al 2016), Daya Bay (Guo et al 2007), SuperKamiokande (Simpson et al 2019), and the upcoming HyperKamiokande (Abe et al 2016), DUNE (Acciarri et al 2016), and JUNO (JUNO Collaboration 2022). The search for presupernova neutrinos is ongoing and of interest, as they allow tests of stellar and neutrino physics (e.g., Kosmas et al 2022) and enable an early alert of an impending core-collapse supernova to the electromagnetic and gravitational wave communities Mukhopadhyay et al 2020;Al Kharusi et al 2021).…”
Section: Introductionmentioning
confidence: 99%