The effects of cooling manner on the microstructure and mechanical properties of 27Cr–4Mo–2Ni ferritic stainless steel were investigated. It was found that the Laves phase (except for the TiN and Nb(C, N) particles) was distributed both in the grains and at the grain boundaries in the furnace-cooled specimen. The water-quenched and air-cooled specimens showed only TiN and Nb(C, N) particles. After annealing at 1100°C, the furnace-cooled specimen showed significant grain coarsening as compared to the water-quenched and air-cooled specimens. Furthermore, the Vickers hardness of the furnace-cooled specimen increased, while the total elongation decreased because of the formation of the Laves phase. The precipitation of the Laves phase resulted in the brittle fracture of the specimen during the tensile test.