Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The relationship between the lithosphere and the mantle during the supercontinent cycle is complex and poorly constrained. The processes which drive dispersal are often simplified to two end members: slab pull and plume push. We aim to explore how lithosphere thickness and viscosity during supercontinent assembly may affect the interaction of deep mantle structures throughout the supercontinent cycle. We consider supercontinental lithosphere structure as one of many potential processes which may affect the evolution of upwellings and downwellings and therefore systematically vary the properties of continental and cratonic lithosphere, respectively within our 3D spherical simulations. The viscosity and thickness of the lithosphere alters the dip and trajectory of downwelling material beneath the supercontinent as it assembles. Focusing on Pangea, we observe that plumes evolve and are swept beneath the center of the supercontinent by circum‐continental subduction. The proximity of these upwelling and downwelling structures beneath the supercontinent interior varies with lithosphere thickness and viscosity. Where slabs impinge on the top of an evolving plume head (when continental and cratonic lithosphere are thick and viscous in our simulations), the cold slabs can reduce the magnitude of an evolving plume. Conversely, when the continental lithosphere is thin and weak in our simulations, slab dips shallow in the upper mantle and descend adjacent to the evolving plume, sweeping it laterally near the core‐mantle boundary. These contrasting evolutions alter the magnitude of the thermal anomaly and the degree to which the plume can thin the lithosphere prior to breakup.
The relationship between the lithosphere and the mantle during the supercontinent cycle is complex and poorly constrained. The processes which drive dispersal are often simplified to two end members: slab pull and plume push. We aim to explore how lithosphere thickness and viscosity during supercontinent assembly may affect the interaction of deep mantle structures throughout the supercontinent cycle. We consider supercontinental lithosphere structure as one of many potential processes which may affect the evolution of upwellings and downwellings and therefore systematically vary the properties of continental and cratonic lithosphere, respectively within our 3D spherical simulations. The viscosity and thickness of the lithosphere alters the dip and trajectory of downwelling material beneath the supercontinent as it assembles. Focusing on Pangea, we observe that plumes evolve and are swept beneath the center of the supercontinent by circum‐continental subduction. The proximity of these upwelling and downwelling structures beneath the supercontinent interior varies with lithosphere thickness and viscosity. Where slabs impinge on the top of an evolving plume head (when continental and cratonic lithosphere are thick and viscous in our simulations), the cold slabs can reduce the magnitude of an evolving plume. Conversely, when the continental lithosphere is thin and weak in our simulations, slab dips shallow in the upper mantle and descend adjacent to the evolving plume, sweeping it laterally near the core‐mantle boundary. These contrasting evolutions alter the magnitude of the thermal anomaly and the degree to which the plume can thin the lithosphere prior to breakup.
Summary The Earth’s magnetic field is generated by a dynamo in the outer core and is crucial for shielding our planet from harmful radiation. Despite the established importance of the core-mantle boundary heat flux as driver for the dynamo, open questions remain about how heat flux heterogeneities affect the magnetic field. Here, we explore the distribution of core-mantle boundary heat flux on Earth and its changes over time using compressible global 3-D mantle convection models in the geodynamic modeling software ASPECT. We discuss the use of the consistent boundary flux method as a tool to more accurately compute boundary heat fluxes in finite element simulations and the workflow to provide the computed heat flux patterns as boundary conditions in geodynamo simulations. Our models use a plate reconstruction throughout the last 1 billion years—encompassing the complete supercontinent cycle—to determine the location and sinking speed of subducted plates. The results show how mantle upwellings and downwellings create localized heat flux anomalies at the core-mantle boundary that can vary drastically over Earth’s history and depend on the properties and evolution of the lowermost mantle as well as the surface subduction zone configuration. The distribution of hot and cold structures at the core-mantle boundary changes throughout the supercontinent cycle in terms of location, shape and number, indicating that these structures fluctuate and might have looked very differently in Earth’s past. We estimate the resulting amplitude of spatial heat flux variations, expressed by the ratio of peak-to-peak amplitude to average heat flux, q*, to be at least 2. However, depending on the material properties and the adiabatic heat flux out of the core, q* can easily reach values >30. For a given set of material properties, q* generally varies by 30-50% over time. Our results have implications for understanding the Earth’s thermal evolution and the stability of its magnetic field over geological timescales. They provide insights into the potential effects of the mantle on the magnetic field and pave the way for further exploring questions about the nucleation of the inner core and the past state of the lowermost mantle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.