Microstructural evolution of NiTi shape memory alloy (SMA) with a nominal composition of Ni 50.9 Ti 49.1 (at %) is investigated on the basis of heat treatment and severe plastic deformation (SPD). As for as-rolled NiTi SMA samples subjected to aging, plenty of R phases appear in the austenite matrix. In terms of as-rolled NiTi SMA samples undergoing solution treatment and aging, Ni 4 Ti 3 precipitates arise in the austenite matrix. In the case of as-rolled NiTi SMA samples subjected to SPD and aging, martensitic twins are observed in the matrix of NiTi SMA. With respect to as-rolled NiTi SMA samples subjected to solution treatment, SPD, and aging, neither R phases nor Ni 4 Ti 3 precipitates are observed in the matrix of NiTi SMA. The dislocation networks play an important role in the formation of the R phase. SPD leads to amorphization of NiTi SMA, and in the case of annealing, amorphous NiTi SMA samples are subjected to crystallization. This contributes to suppressing the occurrence of R phase and Ni 4 Ti 3 precipitate in NiTi SMA.