Mandelalides A–D (1–4) are macrocyclic polyketides known to have an unusual bioactivity profile influenced by compound glycosylation and growth phase of cultured cells. The isolation and characterization of additional natural congeners, mandelalides E–L (5–12), and the supply of synthetic compounds 1 and 12, as well as seco-mandelalide A methyl ester (13), have now facilitated mechanism of action and structure-activity relationship studies. Glycosylated mandelalides are effective inhibitors of aerobic respiration in living cells. Macrolides 1 and 2 inhibit mitochondrial function similar to oligomycin A and apoptolidin A, selective inhibitors of the mammalian ATP synthase (complex V). 1 inhibits ATP synthase activity from isolated mitochondria and triggers caspase-dependent apoptosis in HeLa cells, which are more sensitive to inhibition by 1 in the presence of the glycolysis inhibitor 2-deoxyglucose. Thus, mandelalide cytotoxicity depends on basal metabolic phenotype; cells with an oxidative phenotype are most likely to be inhibited by the mandelalides.