In order to reduce the variation in a manufacturing process, traditional statistical process control (SPC) techniques are the most frequently used tools in monitoring engineering process control (EPC)-controlled processes for detecting assignable cause process variation. Even though application of SPC with EPC can successfully detect time points when abnormalities occur during process, their combination can also cause an increased occurrence of false alarms when autocorrelation is present in the process. In this paper, we propose an independent component analysisbased signal extraction technique with classification and regression tree approach to identify disturbance levels in the correlated process parameters. For comparison, traditional cumulative sum (CUSUM) chart was constructed to evaluate the identifying capability of the proposed approach. The experimental results show that the proposed method outperforms CUSUM control chart in most instances. Copyright