Методом ИК-спектроскопии изучены структурные отклики частиц монтмориллонитовой и каолинитовой глин месторождений Оренбургской области на СВЧ-воздействие. Обработку проб в течение 10 минут проводили в поле магнетрона мощностью 750 Вт в воздушной и влажной средах. Спектры получены с помощью ИК-Фурье спектрометра в диапазоне длин волн 4000–400 cм-1. Установлено, что в монтмориллонитовой глине количество доминирующих связей в тетраэдре SiO4 снижается в 1.5 раза при обработке в сухом воздухе и в 1.8 раза – во влажном. В глине, содержащей каолинит, все типы связей активно разрушаются под воздействием СВЧ-поля.
ИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при финансовой поддержке РФФИ и правительства Оренбургской области в рамках научного проекта № 19-43-560001 р_а «Физико-химические принципы процессов СВЧ-консолидации каолинитов».
REFERENCES
Domashevskaya, E. P., Builov, N. S., Lukin, A. N. Sitnikov A. V. IR spectroscopic study of interatomic interaction in [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 multilayer nanostructures with metal-containing composite layers. Neorganicheskie materialy [Inorganic Materials], 2018, v. 54(9), pp. 140−146 https://doi.org/10.1134/S002016851802005X
Chetverikova, A. G., Maryakhina V. S. Studies of polymineral clay containing three-layer aluminosilica tes by physical methods. Vestnik Orenburgskogo gosudar stvennogo universiteta, 2015, no. 1, pp. 250−255. (in Russ.)
Chetverikova A. G., Filyak M. M., Kanygina O. N. Evolution of phase morphology in dispersed clay systems under the microwave irradiation. Ceramica, 2018, v. 64(371), pp. 367−372. https://doi.org/10.1590/0366-69132018643712354
Filyak M. M., Chetverikova A. G., Kanygina O. N., Bagdasaryan L. S. Fractal formalism as applied to the analysis of the microwave modifi cation of disperse systems. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(4), pp. 578−585. URL: https://journals.vsu.ru/kcmf/article/view/168/94 (in Russ.)
Kanygina O. N., Filyak M. M., Chetverikova A. G. Microwave-Induced Phase Transformations of Natural Clay in Air and Humid Media. Neorganicheskie materially [Inorganic Materials], 2018, v. 54(9), pp. 904–909. https://doi.org/10.1134/S0020168518090042
Yavna V. A., Kasprzhitskii A. S., Lazorenko G. I., Kochur A. G. Study of IR spectra of a polymineral natural association of phyllosilicate minerals. Optics and Spectroscopy, 2015, v. 118(4), pp. 526−536. https://doi.org/10.7868/S0030403415040224
Chetverikova A. G., Kanygina O. N., Filyak M. M., Savinkova E. S. Physical optics methods of recording weak structural responses of dispersed clay systems to the effect of microwave radiation. Measurement Techniques, 2018, v. 60(1)1, pp. 1109−1115. https://doi.org/10.1007/s11018-018-1326-4
Stevenson C. M., Gurnick M. Structural collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fi red earthenware. Journal of Archaeological Science, 2016, v. 69, pp. 54−63. https://doi.org/10.1016/j.jas.2016.03.004
De Oliveira C. I. R., Rocha M. C. G., Da Silva A. L. N., Bertolino L. C. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Ceramica, 2016, vol. 62, Iss. 363, pp. 272−277. https://doi.org/10.1590/0366-69132016623631970
Plyusnina, I. I. Infrakrasnye spektry mineralov [Infrared spectra of minerals]. Moscow, Moscow University Publ., 1976, 190 p. (in Russ.)
ISO 11464:2006 Soil quality – Pretreatment of samples for physico-chemical analysis, ISO STANDARD, 2006, 11 p.
Šaponjić A., Šaponjić Đ., Nikolić V, Milošević M., Marinović-Cincović M., Gyoshev S., Vuković M., Kokunešoski M. Iron (III) oxide fabrication from natural clay with reference to phase transformation g- →a-Fe2O3 // Science of Sintering, 2017, v. 49(2), pp. 197–205. https://doi.org/10.2298/SOS1702197S
Kool A., Thakur P., Bagchi B., Hoque N.A., Das S. Mechanical, dielectric and photoluminescence properties of alumina-mullite composite derived from natural Ganges clay. Applied Clay Science, v. 114, 2015, pp. 349−358. https://doi.org/10.1016/j.clay.2015.06.021
Stack K. M., Milliken R. E. Modeling near-infrared refl ectance spectra of clay and sulfate mixtures and implications for Mars. Icarus, v. 250, 2015, pp. 332−356. https://doi.org/10.1016/j.icarus.2014.12.009
Anadгo P., Pajolli I. L. R., Hildebrando E. A., Wiebeck H. Preparation and characterization of carbon/montmorillonite composites and nanocomposites from waste bleaching sodium montmorillonite clay. Advanced Powder Technology, 2014, v. 25(3), pp. 926−932. https://doi.org/10.1016/j.apt.2014.01.010
Lazorenko G. I., Kasprzhitskii A. S., Yavna V. A. Application of IR spectroscope to determine mechanical properties of polycrystalline materials based on layered aluminosilicate . Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2014, vol. 16, no. 4, pp. 479−485. URL: http://www.kcmf. vsu.ru/resources/t_16_4_2014_011.pdf (in Russ.)