Relationship loci (rQTL) exist when the correlation between multiple traits varies by genotype. rQTL often occur due to gene-by-gene (G 3 G) or gene-by-environmental interactions, making them a powerful tool for detecting G 3 G. Here we present an empirical analysis of apolipoprotein E (APOE) with respect to lipid traits and incident CHD leading to the discovery of loci that interact with APOE to affect these traits. We found that the relationship between total cholesterol (TC) and triglycerides (ln TG) varies by APOE isoform genotype in African-American (AA) and European-American (EA) populations. The e2 allele is associated with strong correlation between ln TG and TC while the e4 allele leads to little or no correlation. This led to a priori hypotheses that APOE genotypes affect the relationship of TC and/or ln TG with incident CHD. We found that APOE*TC was significant (P = 0.016) for AA but not EA while APOE*ln TG was significant for EA (P = 0.027) but not AA. In both cases, e2e2 and e2e3 had strong relationships between TC and ln TG with CHD while e2e4 and e4e4 results in little or no relationship between TC and ln TG with CHD. Using ARIC GWAS data, scans for loci that significantly interact with APOE produced four loci for African Americans (one CHD, one TC, and two HDL). These interactions contribute to the rQTL pattern. rQTL are a powerful tool to identify loci that modify the relationship between risk factors and disease and substantially increase statistical power for detecting G 3 G.
CORONARY heart disease [CHD (MIM 608901)] is challenging because it is a complex trait with a complicated genetic architecture. The MIM number is a reference in the Online Mendelian Inheritance in Man (OMIM) database. Recent genome-wide association studies (GWAS) have been successful in identifying regions of the genome with significant marginal effects. However, the combined effect of these loci explains only a small portion of the estimated total heritability. The traditional approach in association studies has been to test one phenotype at a time, even when multiple interrelated phenotypes are available for each individual.Because biological systems are organized in highly interactive pathways, changes at one level are likely to affect multiple traits throughout the system. Pleiotropy occurs when a single gene influences the variation of multiple phenotypes. Pleiotropic loci are common in complex biological systems (Stearns 2010) and tend to interact with other loci affecting traits within the same modular units (Wagner et al. 2007;Kenney-Hunt and Cheverud 2009). Pleiotropy is thought to play a primary role in the evolution of complex structures and systems (Wagner and Zhang 2011).A conundrum in evolutionary biology is how a complex multitrait system with pleiotropy can evolve when a beneficial mutation for one trait may have detrimental consequences for another. Recent work (Pavlicev et al. 2011a;Pavlicev and Wagner 2012) has shown that relationship loci (rQTL) creates variation in pleiotropy that can be sel...