The manufacturing of a textile begins with the fiber input, whereby each processing step results in an added cost to the final product. As dyeing of a textile is often the last step in the manufacturing of a fabric, it requires extra caution to get it right by avoiding waste and maintaining cost control. Only under favourable conditions is it possible to get it right the first time. In the past, it was not unusual for a dyer to re-dye until the target shade was reached. A typical strategy was to start with a base recipe that undershot the target shade. After each dyeing the missing dye component was added to the bath until the shade was matched. The smaller the number of reformulation, the more skilful the dyer was considered. The Right-First-Time (RFT) dyeing concept was introduced in 1970 and became a desired feature of textile dyeing. This concept meant that at each dyeing the target shade was achieved the first time, hence not requiring re-dyeing. However, the successful evolution of the concept depended on work carried out over many years by a relatively small number of organizations. Many application research and development projects were carried out mainly by the laboratory, pilot-plant and bulk-scale equipment of the major users and manufacturers of dyes and equipment, as well as by universities. Since the end of 20th century, with the increased competition, dye houses are asked to meet more exact requirements while they are under pressure to reduce the cost of manufacturing. In order to stay competitive and be in business, they were required to exercise tighter quality control and seek ways to optimize dyeings. This necessitated the understanding of a) dyes, chemicals and substrates and their compatibilities; and b) the parameters that influence the rate and extent of dye uptake by the substrate (Park & Shore, 2007). The variables that are objectively measured and monitored during a dyeing for quality control purposes have traditionally been limited to time, temperature, pH, and conductivity. Measurement of the fabric shade reflectance is only utilized in the development of new recipes/procedures and the verification of the dyed fabric shade. The development of recipes/procedures and the debugging of dyeing problems continue to rely on indirect information obtained by ad-hoc trail and errors, subjective observations, and visual assessments of dyers. The first prototype system (Beck et al., 1990;Keaton & Glover, 1985) to measure the dye build up directly in real-time during a dyeing was developed in 1990's. However, due to technological limitations such as; a) the high cost of spectrophotometers, b) the low computation speed that is not sufficient to process the data generated by the 7 www.intechopen.com