2010
DOI: 10.1051/0004-6361/201015368
|View full text |Cite
|
Sign up to set email alerts
|

Evolution of the fundamental plane of 0.2  <  z  <  1.2 early-type galaxies in the EGS

Abstract: Context. The fundamental plane links the structural properties of early-type galaxies such as its surface brightness and effective radius with its dynamics. The study of the fundamental plane evolution therefore has important implications for models of galaxy formation and evolution. Aims. This work aims to identify signs of evolution of early-type galaxies through the study of parameter correlations such as the fundamental plane, the Kormendy, and the Faber-Jackson relations, using a sample of 135 field galax… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2011
2011
2018
2018

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(2 citation statements)
references
References 54 publications
(81 reference statements)
0
2
0
Order By: Relevance
“…The scaling relation parameters and their scatter depend on a number of factors: structural parameter definitions (Courteau 1996(Courteau , 1997, environment (Vogt 1995;Mocz et al 2012), fitting algorithms (Courteau et al 2007a;Avila-Reese et al 2008;Hall et al 2012), redshift and peculiar motions (Willick et al 1997;Willick & Strauss 1998;Fernández Lorenzo et al 2011;Miller et al 2011), projection effects and bandpass (Aaronson et al 1986;Hall et al 2012), morphology (Courteau et al 2007a;Tollerud et al 2011), stellar populations (Cappellari et al 2006;Falcón-Barroso et al 2011b;Cappellari et al 2013a), and metallicity (Woo et al 2008), to name a few. Furthermore, despite recent progress, galaxy formation models still struggle with basic relations of galaxies, including color dependencies and structural bimodalities (Dekel & Birnboim 2006;McDonald et al 2009b), angular momentum content (Fall & Romanowsky 2013;Obreschkow & Glazebrook 2014), variations in the stellar initial mass function (IMF) Cappellari et al 2012;Smith 2014), central versus satellite distributions (Rodríguez-Puebla et al 2015), and more.…”
Section: Introductionmentioning
confidence: 99%
“…The scaling relation parameters and their scatter depend on a number of factors: structural parameter definitions (Courteau 1996(Courteau , 1997, environment (Vogt 1995;Mocz et al 2012), fitting algorithms (Courteau et al 2007a;Avila-Reese et al 2008;Hall et al 2012), redshift and peculiar motions (Willick et al 1997;Willick & Strauss 1998;Fernández Lorenzo et al 2011;Miller et al 2011), projection effects and bandpass (Aaronson et al 1986;Hall et al 2012), morphology (Courteau et al 2007a;Tollerud et al 2011), stellar populations (Cappellari et al 2006;Falcón-Barroso et al 2011b;Cappellari et al 2013a), and metallicity (Woo et al 2008), to name a few. Furthermore, despite recent progress, galaxy formation models still struggle with basic relations of galaxies, including color dependencies and structural bimodalities (Dekel & Birnboim 2006;McDonald et al 2009b), angular momentum content (Fall & Romanowsky 2013;Obreschkow & Glazebrook 2014), variations in the stellar initial mass function (IMF) Cappellari et al 2012;Smith 2014), central versus satellite distributions (Rodríguez-Puebla et al 2015), and more.…”
Section: Introductionmentioning
confidence: 99%
“…There is a range in observations of evolution of velocity dispersion with redshift. Some studies (Fernández Lorenzo et al 2011) actually show a small decline in velocity dispersion with increasing redshift. However, to be most generous with the expanding universe hypothesis, we select the study (Cenarro & Trujillo 2009) with the maximum increase in velocity dispersion with z.…”
Section: E L O C I T Y D I S P E R S I O N T E S T F O R S I Z E E mentioning
confidence: 97%