Pantoea agglomerans is an ecologically diverse taxon that includes commercially important plant-beneficial strains and opportunistic clinical isolates. Standard biochemical identification methods in diagnostic laboratories were repeatedly shown to run into false-positive identifications of P. agglomerans, a fact which is also reflected by the high number of 16S rRNA gene sequences in public databases that are incorrectly assigned to this species. More reliable methods for rapid identification are required to ascertain the prevalence of this species in clinical samples and to evaluate the biosafety of beneficial isolates. Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) methods and reference spectra (SuperSpectrum) were developed for accurate identification of P. agglomerans and related bacteria and used to detect differences in the protein profile within variants of the same strain, including a ribosomal point mutation conferring streptomycin resistance. MALDI-TOF MS-based clustering was shown to generally agree with classification based on gyrB sequencing, allowing rapid and reliable identification at the species level. (20) is a ubiquitous plant-epiphytic bacterium that belongs to the family Enterobacteriaceae. While several strains are commercialized for biological control of plant diseases (23), the species also includes two phytopathogenic pathovars that carry distinctive virulence plasmids (32). P. agglomerans has a Jekyll-Hyde nature, being described also as an opportunistic human pathogen (30), which raises biosafety regulatory issues for the utilization of beneficial isolates (45). Clinical reports predominantly involve septicemia following penetrating trauma (16, 56) or nosocomial infections (14,55). Clinical pathogenicity of this species has not been confidently confirmed (unfulfilled Koch's postulates). Infections attributed to P. agglomerans are typically of a polymicrobial nature involving patients affected by other diseases (14) and may represent secondary contamination of wounds. Standard clinical diagnostics and identification rely mainly on biochemical profiling analysis or alternatively on 16S rRNA gene sequencing, despite the inadequacy of these techniques for precise discrimination within the Enterobacter and Pantoea genera (5, 20, 39). Problems with correct identification have been observed for automated systems such as the API 20E (24, 39) and Vitek-2/GNIϩ (39, 40) (both from bioMerieux) or the Phoenix (11, 38) and Crystal identification systems (40, 48) (both from BD Diagnostic Systems).
Pantoea agglomerans
P. agglomerans is a composite taxon conglomerating formerEnterobacter agglomerans, Erwinia milletiae, and Erwinia herbicola strains. Accurate identification is complicated by the unsettled taxonomy of the "P. agglomerans-E. herbicola-E. agglomerans" complex (45). Recent analyses based on gyrB sequencing, multilocus sequence analysis (MLSA) (4), and fluorescent amplified fragment length polymorphisms (fAFLP) (45) indicate that strain...