Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Botulinum neurotoxin (BoNT) is responsible for botulism, a clinical condition resulting in flaccid muscle paralysis and potentially death. The light chain is responsible for its intracellular toxicity through its endopeptidase activity. Available crystal structures of BoNT/A light chains (LCA) are based on various truncated versions (tLCA) of the full-length LCA (fLCA) and do not necessarily reflect the true structure of LCA in solution. The understanding of the mechanism of action, longevity of intoxication, and an improved development of endopeptidase inhibitors are dependent on first having a better insight into the structure of LCA in solution. Using an array of biophysical techniques, we report that the fLCA structure is significantly more flexible than tLCA in solution, which may be responsible for its dramatically higher enzymatic activity. This seems to be achieved by a much stronger, more rapid binding to substrate (SNAP-25) of the fLCA compared to tLCA. These results suggest that the C-terminus of LCA plays a critical role in introducing a flexible structure, which is essential for its biological function. This is the first report of such a massive structural role of the C-terminus of a protein being critical for maintaining a functional state.
Botulinum neurotoxin (BoNT) is responsible for botulism, a clinical condition resulting in flaccid muscle paralysis and potentially death. The light chain is responsible for its intracellular toxicity through its endopeptidase activity. Available crystal structures of BoNT/A light chains (LCA) are based on various truncated versions (tLCA) of the full-length LCA (fLCA) and do not necessarily reflect the true structure of LCA in solution. The understanding of the mechanism of action, longevity of intoxication, and an improved development of endopeptidase inhibitors are dependent on first having a better insight into the structure of LCA in solution. Using an array of biophysical techniques, we report that the fLCA structure is significantly more flexible than tLCA in solution, which may be responsible for its dramatically higher enzymatic activity. This seems to be achieved by a much stronger, more rapid binding to substrate (SNAP-25) of the fLCA compared to tLCA. These results suggest that the C-terminus of LCA plays a critical role in introducing a flexible structure, which is essential for its biological function. This is the first report of such a massive structural role of the C-terminus of a protein being critical for maintaining a functional state.
Clostridial neurotoxins, which include botulinum neurotoxins (BoNTs) and tetanus neurotoxins, have evolved a remarkably sophisticated structure and molecular mechanism fine-tuned for the targeting and cleavage of vertebrate neuron substrates leading to muscular paralysis. How and why did this toxin evolve? From which ancestral proteins are BoNTs derived? And what is, or was, the primary ecological role of BoNTs in the environment? In this article, we examine these questions in light of recent studies identifying homologs of BoNTs in the genomes of non-clostridial bacteria, including Weissella, Enterococcus and Chryseobacterium. Genomic and phylogenetic analysis of these more distantly related toxins suggests that they are derived from ancient toxin lineages that predate the evolution of BoNTs and are not limited to the Clostridium genus. We propose that BoNTs have therefore evolved from a precursor family of BoNT-like toxins, and ultimately from non-neurospecific toxins that cleaved different substrates (possibly non-neuronal SNAREs). Comparison of BoNTs with these related toxins reveals several unique molecular features that underlie the evolution of BoNT's unique function, including functional shifts involving all four domains, and gain of the BoNT gene cluster associated proteins. BoNTs then diversified to produce the existing serotypes, including TeNT, and underwent repeated substrate shifts from ancestral VAMP2 specificity to SNAP25 specificity at least three times in their history. Finally, similar to previous proposals, we suggest that one ecological role of BoNTs could be to create a paralytic phase in vertebrate decomposition, which provides a competitive advantage for necrophagous scavengers that in turn facilitate the spread of Clostridium botulinum and its toxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.