Abstract:Real-world combinatorial optimization problems are often stochastic and dynamic. Therefore, it is essential to make optimal and reliable decisions with a holistic approach. In this paper, we consider the dynamic chance-constrained knapsack problem where the weight of each item is stochastic, the capacity constraint changes dynamically over time, and the objective is to maximize the total profit subject to the probability that total weight exceeds the capacity. We make use of prominent tail inequalities such as… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.