2016
DOI: 10.1017/s0031182016001499
|View full text |Cite
|
Sign up to set email alerts
|

Evolutionary characterization ofTy3/gypsy-like LTR retrotransposons in the parasitic cestodeEchinococcus granulosus

Abstract: Cyclophyllidean cestodes including Echinococcus granulosus have a smaller genome and show characteristics such as loss of the gut, a segmented body plan, and accelerated growth rate in hosts compared with other tissue-invading helminths. In an effort to address the molecular mechanism relevant to genome shrinkage, the evolutionary status of long-terminal-repeat (LTR) retrotransposons, which are known as the most potent genomic modulators, was investigated in the E. granulosus draft genome. A majority of the E.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 47 publications
(101 reference statements)
0
2
0
Order By: Relevance
“…This led to important questions on alternative mechanisms that are employed by parasitic flatworms to protect their genomes against transposons [11]. Cestode genomes contain a number of repeats with characteristics of transposable elements such as GYPSY class of LTR retrotransposons or Merlin DNA transposons [8, 16]. Furthermore, we recently identified a terminal repeat retrotransposon in miniature (TRIM) family which is massively expressed in germinative cells of taeniid cestodes [17].…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…This led to important questions on alternative mechanisms that are employed by parasitic flatworms to protect their genomes against transposons [11]. Cestode genomes contain a number of repeats with characteristics of transposable elements such as GYPSY class of LTR retrotransposons or Merlin DNA transposons [8, 16]. Furthermore, we recently identified a terminal repeat retrotransposon in miniature (TRIM) family which is massively expressed in germinative cells of taeniid cestodes [17].…”
Section: Discussionmentioning
confidence: 99%
“…This raises questions concerning alternative MGE silencing pathways in cestodes [11], which, to be properly addressed, first require the characterization of repetitive elements in their genomes. With the exception of a few reports on repetitive elements encoding spliced leader RNAs [14, 15], inactive copies of Gypsy class Long Terminal repeats [16], and stem cell-specifically expressed copies of a TRIM (terminal repeat retrotransposon in miniature)-element [17]; however, respective information is presently scarce.…”
Section: Introductionmentioning
confidence: 99%