Ensemble techniques-wherein a model is composed of multiple (possibly) weaker models-are prevalent nowadays within the field of machine learning (ML). Well-known methods such as bagging [1], boosting [2], and stacking [3] are ML mainstays, widely (and fruitfully) deployed on a daily basis. Generally speaking, there are two types of ensemble methods, the first generating models in sequence-e.g., AdaBoost [2]-the latter in a parallel manner-e.g., random forests [4] and evolutionary algorithms [5]. AdaBoost (Adaptive Boosting) is an ML meta-algorithm that is used in conjunction with other types of learning algorithms to improve performance. The output of so-called "weak learners" is combined into a weighted sum that represents the final output of the boosted classifier. Adaptivity is obtained by tweaking subsequent weak learners in favor of those instances misclassified by previous classifiers. The maximum number of estimators at which boosting is terminated is a free parameter that has to be carefully set by the user. The popular Scikit-learn Python package, used extensively within the ML community, sets this default value to 50 [6]. A random forest is an ensemble learning method that operates by constructing a multitude of decision trees at training time and then outputting the majority class (for classification problems) or mean prediction (for regression problems) of the individual trees. The number of trees is a free parameter set by the user; the default Scikit-learn value is 100 (up from 10 in past versions) [6]. An evolutionary algorithm is a population-based approach that inherently produces a cornucopia of models over generations of evolution. Most often one seeks a single, final model (or a Pareto set of models, when multiple objectives are sought). Yet, as eloquently suggested by [7] in their paper's title, might we not obtain "Ensemble learning for free with evolutionary algorithms?" They proposed evolutionary ensemble learning, which extracts an ensemble either from the final population only or incrementally during evolution. Recently, [8] focused on genetic programming-wherein the individuals evolved are computational trees-introducing an ensemble coevolutionary algorithm that maintains two subpopulations, trees and forests, with the output model being a forest built as an ensemble of trees.