2021
DOI: 10.1155/2021/8850600
|View full text |Cite
|
Sign up to set email alerts
|

Evolutionary Framework with Bidirectional Long Short-Term Memory Network for Stock Price Prediction

Abstract: As an important part of the social economy, stock market plays an important role in economic development, and accurate prediction of stock price is important as it can lower the risk of investment decision-making. However, the task of predicting future stock price is very difficult. This difficulty arises from stocks with nonstationary behavior and without any explicit form. In this paper, we propose a novel bidirectional Long Short-Term Memory Network (BiLSTM) framework called evolutionary BiLSTM (EBiLSTM) fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 30 publications
0
0
0
Order By: Relevance