Background
The genus Borrelia is composed of two well-defined monophyletic groups, the Borrelia burgdorferi sensu lato complex (Bb) and the relapsing fever (RF) group borreliae. Recently, a third group, associated with reptiles and echidnas, has been described. In general, RF group borreliae use rodents as reservoir hosts; although neotropical bats may also be involved as important hosts, with scarce knowledge regarding this association. The objective of this study was to detect the presence of Borrelia spp. DNA in bats from the department of Córdoba in northwest Colombia.
Methods
During September 2020 and June 2021, 205 bats were captured in six municipalities of Córdoba department, Colombia. Specimens were identified using taxonomic keys and DNA was extracted from spleen samples. A Borrelia-specific real-time PCR was performed for the 16S rRNA gene. Fragments of the 16S rRNA and flaB genes were amplified in the positive samples by conventional PCR. The detected amplicons were sequenced by the Sanger method. Phylogenetic reconstruction was performed in IQ-TREE with maximum likelihood based on the substitution model TPM3+F+I+G4 with bootstrap values deduced from 1000 replicates.
Results
Overall, 10.2% (21/205) of the samples were found positive by qPCR; of these, 81% (17/21) and 66.6% (14/21) amplified 16S rRNA and flaB genes, respectively. qPCR-positive samples were then subjected to conventional nested and semi-nested PCR to amplify 16S rRNA and flaB gene fragments. Nine positive samples for both genes were sequenced, and seven and six sequences were of good quality for the 16S rRNA and flaB genes, respectively. The DNA of Borrelia spp. was detected in the insectivorous and fruit bats Artibeus lituratus, Carollia perspicillata, Glossophaga soricina, Phyllostomus discolor, and Uroderma sp. The 16S rRNA gene sequences showed 97.66–98.47% identity with “Borrelia sp. clone Omi3,” “Borrelia sp. RT1S,” and Borrelia sp. 2374; the closest identities for the flaB gene were 94.02–98.04% with “Borrelia sp. Macaregua.” For the 16S rRNA gene, the phylogenetic analysis showed a grouping with “Candidatus Borrelia ivorensis” and “Ca. Borrelia africana,” and for the flaB gene showed a grouping with Borrelia sp. Macaregua and Borrelia sp. Potiretama. The pathogenic role of the Borrelia detected in this study is unknown.
Conclusions
We describe the first molecular evidence of Borrelia spp. in the department of Córdoba, Colombia, highlighting that several bat species harbor Borrelia spirochetes.
Graphical Abstract