Environmental factors, including mechanical stress and surrounding lipids, can influence the response of GPCRs, such as the mechanosensitive angiotensin II type 1 receptor (AT1). To investigate the impact of these factors on AT1 activation, we developed a steered molecular dynamics simulations protocol based on quaternion formalism. In this protocol, a pulling force was applied to the N-terminus of transmembrane helix 6 (TM6) to induce the TM6 opening characteristic of activation. Subsequently, the simulations were continued without constraints to allow the receptor to relax around the novel TM6 conformation under different conditions. We analyzed the responses of AT1 to membrane stretching, modeled by applying surface tension, in different bilayers. In phosphocholine bilayers without surface tension, we could observe a transient atypical structure of AT1, with an outward TM7 conformation, at the beginning of the activation process. This atypical structure then evolved toward a pre-active structure with outward TM6 and inward TM7. Strikingly, the presence of anionic phosphoglycerol lipids and application of surface tension synergistically favored the atypical structure, which led to an increase in the cross-section area of the receptor intracellular domain. Lipid internalization and H-bonds between lipid heads and the receptor C-terminus increased in phosphoglycerol vs phosphocholine bilayers, but did not depend on surface tension. The difference in the cross-section area of the atypical and pre-active conformations makes the conformational transition sensitive to lateral pressure, and favors the atypical conformation upon surface tension. Anionic lipids act as allosteric modulators of the conformational transition, by stabilizing the atypical conformation. These findings contribute to decipher the mechanisms underlying AT1 activation, highlighting the influence of environmental factors on GPCR responses. Moreover, our results reveal the existence of intermediary conformations that depend on receptor environment and could be targeted in drug design efforts.