Human killer cell immunoglobulin-like receptors (KIR) recognize A3/11, Bw4, C1 and C2 epitopes carried by mutually exclusive subsets of HLA-A, B, and C allotypes. Chimpanzee and orangutan have counterparts to HLA-A, B, and C, and KIR that recognize the A3/11, Bw4, C1 and C2 epitopes, either individually or in combination. Because rhesus macaque has counterparts of HLA-A and B, but not HLA-C, we expected that rhesus KIR would better recognize HLA-A and B, than HLA-C. Comparison of the interactions of nine rhesus KIR3D with 95 HLA isoforms, showed the KIR have broad specificity for HLA-A, B, and C, but vary in avidity. Considering both the strength and breadth of reaction, HLA-C was the major target for rhesus KIR, followed by HLA-B, then HLA-A. Strong reactions with HLA-A were restricted to the minority of allotypes carrying the Bw4 epitope, whereas strong reactions with HLA-B partitioned between allotypes having and lacking Bw4. Contrasting to HLA-A and B, every HLA-C allotype bound to the nine rhesus KIR. Sequence comparison of high- and low-binding HLA allotypes revealed the importance of polymorphism in the helix of the α1 domain and the peptide-binding pockets. At peptide position 9, nonpolar residues favor binding to rhesus KIR, whereas charged residues do not. Contrary to expectation, rhesus KIR bind more effectively to HLA-C, than to HLA-A and B. This property is consistent with MHC-C having evolved in hominids to be a generally superior ligand for KIR than MHC-A and MHC-B.