Developmental evolutionary biology has, in the past decade, started to move beyond simply adapting traditional population and quantitative genetics models and has begun to develop mathematical approaches that are designed specifically to study the evolution of complex, nonadditive systems. This article first reviews some of these methods, discussing their strengths and shortcomings. The article then considers some of the principal questions to which these theoretical methods have been applied, including the evolution of canalization, modularity, and developmental associations between traits. I briefly discuss the kinds of data that could be used to test and apply the theories, as well as some consequences for other approaches to phenotypic evolution of discoveries from theoretical studies of developmental evolution.